Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612673

RESUMO

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Assuntos
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiômica , Regulação para Baixo , Carotenoides , Glucose
3.
BMC Genomics ; 25(1): 384, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637729

RESUMO

BACKGROUND: Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS: We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS: These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.


Assuntos
Cucurbita , Cucurbitaceae , Genoma de Cloroplastos , Humanos , Cucurbita/genética , Cucurbitaceae/genética , Filogenia , China , Cloroplastos/genética , Variação Genética
4.
Plant Physiol Biochem ; 208: 108443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479079

RESUMO

Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.


Assuntos
Cucurbita , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Resistência à Seca , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Água/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
Sci Rep ; 14(1): 6793, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514827

RESUMO

Virus diseases are a major production constraint for pumpkin. Recessive resistance to squash leaf curl China virus and tomato leaf curl New Delhi virus has been mapped in Cucurbita moschata (Duchesne ex Poir.) breeding line AVPU1426 to chromosomes 7 and 8, respectively. Molecular markers tightly associated with the resistance loci have been developed and were able to correctly predict resistance and susceptibility with an accuracy of 99% for squash leaf curl China virus resistance and 94.34% for tomato leaf curl New Delhi virus in F2 and back cross populations derived from the original resistance source AVPU1426. The markers associated with resistance are recommended for use in marker-assisted breeding.


Assuntos
Begomovirus , Cucurbita , Cucurbita/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Begomovirus/genética , Biomarcadores , China
6.
Physiol Plant ; 176(2): e14232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450746

RESUMO

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , Sacarose
7.
Sci Rep ; 14(1): 5930, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467669

RESUMO

With widespread cultivation, Cucurbita moschata stands out for the carotenoid content of its fruits such as ß and α-carotene, components with pronounced provitamin A function and antioxidant activity. C. moschata seed oil has a high monounsaturated fatty acid content and vitamin E, constituting a lipid source of high chemical-nutritional quality. The present study evaluates the agronomic and chemical-nutritional aspects of 91 accessions of C. moschata kept at the BGH-UFV and propose the establishment of a core collection based on multivariate approaches and on the implementation of Artificial Neural Networks (ANNs). ANNs was more efficient in identifying similarity patterns and in organizing the distance between the genotypes in the groups. The averages and variances of traits in the CC formed using a 15% sampling of accessions, were closer to those of the complete collection, particularly for accumulated degree days for flowering, the mass of seeds per fruit, and seed and oil productivity. Establishing the 15% CC, based on the broad characterization of this germplasm, will be crucial to optimize the evaluation and use of promising accessions from this collection in C. moschata breeding programs, especially for traits of high chemical-nutritional importance such as the carotenoid content and the fatty acid profile.


Assuntos
Cucurbita , Cucurbita/genética , Brasil , Melhoramento Vegetal , Carotenoides , Frutas/genética
8.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468207

RESUMO

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Assuntos
Proteínas de Arabidopsis , Cucurbita , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Estudo de Associação Genômica Ampla , Plantas/genética , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
9.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473740

RESUMO

The mottled leaf is one of the agronomic traits of zucchini and can be applied as a marker trait in aggregation breeding. However, the genetic mechanism responsible for mottled leaf has yet to be elucidated. In the present study, we used two inbred lines (line '19': silver mottled leaf; line '113': normal leaf) as parents for the physiological and genetic analysis of mottled leaf. The synthesis and net photosynthetic rate of chlorophyll were not significantly affected in the mottled areas of leaves. However, we detected a large space between the palisade parenchyma in the leaf mottle area of line '19', which may have caused the mottled leaf phenotype. Light also plays an important role in the formation of mottled leaf, and receiving light during the early stages of leaf development is a necessary factor. Genetic analysis has previously demonstrated that mottled leaf is a quantitative trait that is controlled by multiple genes. Based on the strategy of quantitative trait locus sequencing (QTL-seq), two QTLs were identified on chromosomes 1 and 17, named CpML1.1 and CpML17.1, respectively. Two major loci were identified using R/qtl software version 1.66 under greenhouse conditions in April 2019 (2019A) and April 2020 (2020A) and under open cultivation conditions in May 2020 (2020M). The major QTL, CpML1.1, was located in a 925.2-kb interval on chromosome 1 and explained 10.51%-24.15% of the phenotypic variation. The CpML17.1 was located in a 719.7-kb interval on chromosome 17 and explained 16.25%-38.68% of the phenotypic variation. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, the Cp4.1LG01g23790 at the CpML1.1 locus encoding a protein of the TPX2 family (target protein of Xklp2) may be a candidate gene for mottled leaf in zucchini. Our findings may provide a theoretical basis for the formation of mottled leaf and provide a foundation for the fine mapping of genes associated with mottled leaf. Molecular markers closely linked to mottled leaf can be used in molecular-assisted selection for the zucchini mottled leaf breeding.


Assuntos
Cucurbita , Cucurbita/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Folhas de Planta/genética
10.
BMC Plant Biol ; 24(1): 90, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317069

RESUMO

BACKGROUND: Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS: This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS: This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.


Assuntos
Cucurbita , Cucurbita/genética , Fotoperíodo , Inibidores da Bomba de Prótons/metabolismo , Diferenciação Sexual , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38207292

RESUMO

Root and crown rot incited by an oomycete, Phytophthora melonis , causes significant yield losses in commercial pumpkin (Cucurbita pepo ) production worldwide. Currently, resistant cultivars and knowledge of molecular mechanism of C. pepo against P. melonis are scarce. Here, we analysed the quantitative gene expression changes of 10 candidate gene markers (bHLH87, ERF014, HSF, MYB, PR-1, WRKY21, CPI, POD, PSK, SGT ) in pumpkin roots and leaves at three time points (h post-inoculation, hpi) following inoculation with P. melonis in two resistant (Ghelyani and Tanbal), and two susceptible (Marmari and Khoreshti) varieties of pumpkin. Gene expression using quantitative real time PCR along a time course revealed the strongest transcriptomic response at 48 and 72hpi in resistant genotypes, 1.1-2.7-fold in roots and leaves, respectively, with a high significant correlation (r =0.857**-0.974**). We also found that CPI , PSK, SGT1 and POD act as a dual regulator that similarly modulate immunity not only against P. melonis , but also against other diseases such as early blight (Alternaria cucumerina) , powdery mildew (Podosphaera xanthii ), downy mildews (Pseudoperonospora cubensis ), and pathogenic plant nematodes (Meloidogyne javanica ). Furthermore, significantly higher activities of the ROS scavenging defence enzymes, catalase (1.6-fold increase) and peroxidase (6-fold increase) were observed in the roots of resistant cultivars at different hpi compared with non-inoculated controls. In addition, the biomass growth parameters including leaf and root length, stem and root diameter, root fresh weight and volume were significantly different among studied genotypes. Cumulatively, the transcriptome data provide novel insights into the response of pumpkins for improving pumpkin breeding to P. melonis .


Assuntos
Cucurbita , Phytophthora , Cucurbita/genética , Phytophthora/genética , Transcriptoma/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica
12.
BMC Genomics ; 25(1): 112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273235

RESUMO

BACKGROUND: Auxin transcription factor (ARF) is an important transcription factor that transmits auxin signals and is involved in plant growth and development as well as stress response. However, genome-wide identification and responses to abiotic and pathogen stresses of the ARF gene family in Cucurbita pepo L, especially pathogen stresses, have not been reported. RESULTS: Finally, 33 ARF genes (CpARF01 to CpARF33) were identified in C.pepo from the Cucurbitaceae genome database using bioinformatics methods. The putative protein contains 438 to 1071 amino acids, the isoelectric point is 4.99 to 8.54, and the molecular weight is 47759.36 to 117813.27 Da, the instability index ranged from 40.74 to 68.94, and the liposoluble index ranged from 62.56 to 76.18. The 33 genes were mainly localized in the nucleus and cytoplasm, and distributed on 16 chromosomes unevenly. Phylogenetic analysis showed that 33 CpARF proteins were divided into 6 groups. According to the amino acid sequence of CpARF proteins, 10 motifs were identified, and 1,3,6,8,10 motifs were highly conserved in most of the CpARF proteins. At the same time, it was found that genes in the same subfamily have similar gene structures. Cis-elements and protein interaction networks predicted that CpARF may be involved in abiotic factors related to the stress response. QRT-PCR analysis showed that most of the CpARF genes were upregulated under NaCl, PEG, and pathogen treatment compared to the control. Subcellular localization showed that CpARF22 was localized in the nucleus. The transgenic Arabidopsis thaliana lines with the CpARF22 gene enhanced their tolerance to salt and drought stress. CONCLUSION: In this study, we systematically analyzed the CpARF gene family and its expression patterns under drought, salt, and pathogen stress, which improved our understanding of the ARF protein of zucchini, and laid a solid foundation for functional analysis of the CpARF gene.


Assuntos
Cucurbita , Filogenia , Cucurbita/genética , Cucurbita/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
13.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37969013

RESUMO

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Assuntos
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenótipo
14.
Plant Biol (Stuttg) ; 26(1): 126-139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975550

RESUMO

Genetic engineering is commonly used to improve the agronomic traits of crops. However, genetic transformation in pumpkin remains a challenge. Conducting transformation trials, we accidentally created transgenic L1 periclinal chimeras in pumpkins. Using our modified Agrobacterium-mediated transformation, we generated transgenic L1 periclinal chimeras which have high value in research on development of the meristem. Fluorescence observations of transformed L1 cells enabled us to reveal cell fates. These L1 cells can develop into stomata, epidermal hairs, seed coat, and epidermis of the root, stem, leaf, flower, and fruit. These periclinal chimeras can be propagated vegetatively with minimal risk of transgene flow. This study offers new perspectives on development of the meristem and a promising technique for creating transgenic periclinal chimeras in plants.


Assuntos
Cucurbita , Meristema , Meristema/genética , Cucurbita/genética , Plantas/genética , Fenótipo , Flores , Plantas Geneticamente Modificadas/genética
15.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068889

RESUMO

Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd.


Assuntos
Citrullus , Cucurbita , Tobamovirus , Transcriptoma , Citrullus/genética , Reguladores de Crescimento de Plantas , Comércio , Internacionalidade , Tobamovirus/genética , Cucurbita/genética , Metaboloma , Doenças das Plantas/genética
16.
BMC Plant Biol ; 23(1): 647, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102604

RESUMO

BACKGROUND: Cucurbita ficifolia is one of the squash species most resistant to fungal pathogens, and has especially high resistance to melon Fusarium wilt. This species is therefore an important germplasm resource for the breeding of squash and melon cultivars. RESULTS: Whole-genome resequencing of 223 individuals from 32 populations in Yunnan Province, the main cucurbit production area in China, was performed and 3,855,120 single-nucleotide polymorphisms (SNPs) and 1,361,000 InDels were obtained. SNP analysis suggested that levels of genetic diversity in C. ficifolia were high, but that different populations showed no significant genetic differentiation or geographical structure, and that individual C. ficifolia plants with fruit rinds of a similar color did not form independent clusters. A Mantel test conducted in combination with geographical distance and environmental factors suggested that genetic distance was not correlated with geographical distance, but had a significant correlation with environmental distance. Further associations between the genetic data and five environmental factors were analyzed using whole-genome association analysis. SNPs associated with each environmental factor were investigated and genes 250 kb upstream and downstream from associated SNPs were annotated. Overall, 15 marker-trait-associated SNPs (MTAs) and 293 genes under environmental selection were identified. The identified genes were involved in cell membrane lipid metabolism, macromolecular complexes, catalytic activity and other related aspects. Ecological niche modeling was used to simulate the distribution of C. ficifolia across time, from the present and into the future. We found that the area suitable for C. ficifolia changed with the changing climate in different periods. CONCLUSIONS: Resequencing of the C. ficifolia accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs identified in this study suggest that environmental factors mediated the formation of the population structure of C. ficifolia in China. These SNPs and Indels might also contribute to the variation in important pathways of genes for important agronomic traits such as yield, disease resistance and stress tolerance. Moreover, the genome resequencing data and the genetic markers identified from 223 accessions provide insight into the genetic variation of the C. ficifolia germplasm and will facilitate a broad range of genetic studies.


Assuntos
Cucurbita , Cucurbitaceae , Humanos , Cucurbita/genética , Marcadores Genéticos , China , Melhoramento Vegetal , Análise de Sequência de DNA , Cucurbitaceae/genética , Polimorfismo de Nucleotídeo Único/genética
17.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002973

RESUMO

In higher plants, WRKY transcription factors are broadly involved in a variety of life activities and play an important role in both biotic and abiotic stress responses. However, little is known about the functions of WRKY genes in the popular species, such as Cucurbita maxima (pumpkin), which is planted worldwide. In the present study, 102 CmWRKY genes were identified in the C. maxima genome. Chromosome location, multiple sequence alignment, phylogenetic analysis, and synteny analysis of the CmWRKYs were performed. Notably, we found that silencing CmWRKY22 promoted cucumber mosaic virus (CMV) infection, whereas overexpression of CmWRKY22 inhibited the CMV infection. Subsequently, an electrophoretic mobility shift assay (EMSA) confirmed that CmWRKY22 was able to bind to the W-box at the promoter of CmPR1b, which is a responsive gene of the salicylic acid (SA) signaling pathway. In summary, this study has provided a foundation for the antiviral functions of WRKY transcription factors in C. maxima.


Assuntos
Cucurbita , Infecções por Citomegalovirus , Cucurbita/genética , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética
18.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895226

RESUMO

The heavy-metal-associated (HMA) proteins are a class of PB1-type ATPases related to the intracellular transport and detoxification of metals. However, due to a lack of information regarding the HMA gene family in the Cucurbitaceae family, a comprehensive genome-wide analysis of the HMA family was performed in ten Cucurbitaceae species: Citrullus amarus, Citrullus colocynthis, Citrullus lanatus, Citrullus mucosospermus, Cucumis melo, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, and Legenaria siceraria. We identified 103 Cucurbit HMA proteins with various members, ranging from 8 (Legenaria siceraria) to 14 (Cucurbita pepo) across species. The phylogenetic and structural analysis confirmed that the Cucurbitaceae HMA protein family could be further classified into two major clades: Zn/Co/Cd/Pb and Cu/Ag. The GO-annotation-based subcellular localization analysis predicted that all HMA gene family members were localized on membranes. Moreover, the analysis of conserved motifs and gene structure (intron/exon) revealed the functional divergence between clades. The interspecies microsynteny analysis demonstrated that maximum orthologous genes were found between species of the Citrullus genera. Finally, nine candidate HMA genes were selected, and their expression analysis was carried out via qRT-PCR in root, leaf, flower, and fruit tissues of C. pepo under arsenic stress. The expression pattern of the CpeHMA genes showed a distinct pattern of expression in root and shoot tissues, with a remarkable expression of CpeHMA6 and CpeHMA3 genes from the Cu/Ag clade. Overall, this study provides insights into the functional analysis of the HMA gene family in Cucurbitaceae species and lays down the basic knowledge to explore the role and mechanism of the HMA gene family to cope with arsenic stress conditions.


Assuntos
Arsênio , Citrullus , Cucurbita , Cucurbitaceae , Metais Pesados , Cucurbitaceae/genética , Cucurbita/genética , Filogenia , Citrullus/genética , Metais Pesados/toxicidade
19.
Plant Genome ; 16(4): e20393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776006

RESUMO

Pumpkins are important vegetable crops widely grown worldwide, and seeds are considered a popular nutraceutical food and an excellent source of protein, oil, and vitamins. Seed size is one of the most important targets for commercial breeding in Cucurbita species; studies have shown that pumpkin seed size variation has a similar trend with fruit size, shape, and seed yield. However, few studies have been conducted to identify genetic loci controlling seed-related traits in cultivated pumpkins. This study analyzed the genomic characteristics of pumpkin breeding materials of 321 Cucurbita accessions collected worldwide, including Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo, using extensive single nucleotide polymorphisms obtained from the genotyping-by-sequencing method, significant genetic variations were identified within and between Cucurbita species. Four major cultivar fruit types were further revealed in C. moschata species, and significant differentiation patterns were detected in several chromosomal regions. A total of 15 significant loci associated with pumpkin seed traits were mapped through a genome-wide association approach; 32 genes previously reported to be associated with seed size regulation in Arabidopsis and Oryza sativa were located in the intervals defined by linkage disequilibrium. Through this study, we gained a deep understanding of the genomic variation distribution across Cucurbita species. The available genetic resources and the associated genetic contents could be used in commercial pumpkin breeding and will facilitate molecular marker-assisted selection in pumpkin seed trait improvement.


Assuntos
Cucurbita , Cucurbita/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Sementes/genética , Genômica
20.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393305

RESUMO

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Assuntos
Cucurbita , Retroelementos , Produtos Agrícolas , Fenótipo , Filogenia , Retroelementos/genética , Cucurbita/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...